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In the context of nonlinear plasmonics, we review the recently introduced concept of plasmonic parametric
resonance (PPR) and discuss potential applications of such phenomena. PPR arises from the temporal modu-
lation of one or more of the parameters governing the dynamics of a plasmonic system and can lead to the
amplification of high-order sub-radiant plasmonic modes. The theory of PPR is reviewed, possible schemes
of implementation are proposed, and applications in optical limiting are discussed.
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Localized surface plasmon (LSP) resonances are a salient
feature of the optical and electronic response of metallic
nanoparticles. These modes can be externally excited by
photonic or electronic scattering, leading to strongly local-
ized electric fields in proximity of the nanoparticle’s sur-
faces. An enhanced optical response is obtained when
LSPs are resonantly excited by an incident field at the
characteristic frequency of the dipolar eigenmode. The dy-
namics of these non-propagating coherent electronic oscil-
lations show a strong dependence on the geometry of the
particles, their composition, and the dielectric environ-
ment in which they are located. Yet, some features are
common to all plasmonic configurations. In particular,
LSP resonances in nanoparticles of any shape form an in-
finite discrete set of modes. In the simple case of particles
of spherical shape with permittivity ε1ðωÞ surrounded by a
medium with permittivity ε2, for a resonance of any order
n, there are 2n þ 1 degenerate states with complex fre-
quency ωn, such that ε1ðωnÞ ¼ −ð1þ nÞε2∕n. As shown
in Fig. 1, for n ≫ 1, the eigenmodes tend to occur for
ε1ðωn ≫ 1Þ ∼−ε2. The increased modal density for
ε1 ∼−ε2 is a general feature of all plasmonic structures.
Such increased modal density in plasmonic particles of dif-
ferent shapes for ε1 ∼−ε2 arises because the spatial oscil-
lation of the fields along the particle’s surface occurs with
a negligible local wavelength compared with the local
radius of curvature of the metal–dielectric interface[1].
Accessing such spectrally dense sets of tightly bound
resonant modes would greatly enhance nonlinear light–
matter interactions at the nanoscale and foster new devel-
opments in nonlinear plasmonics[2].
The efficiency with which LSP resonances can be ex-

cited by an external incident field depends upon the spa-
tial and spectral overlap between the excitation field and
the specific plasmonic mode. For deeply subwavelength
plasmonic particles, only the lowest-order mode of an elec-
tric dipolar nature is efficiently coupled to radiation
states. In order for a particular mode to be efficiently
excited, it is necessary for the incident field to be able to
induce the appropriate polarization charge distribution.

Such polarization charge distributions are illustrated in
Fig. 2 for the first few modes of a sphere. From Fig. 2, it
is apparent that to induce modes of order n > 1 the inci-
dent field would have to display strong spatial variations
over deeply subwavelength regions. That is why the higher-
order eigenmodes tend to be sub-radiant, and by reciproc-
ity, they are nearly decoupled from free-space propagating
fields. Therefore, exciting and detecting such higher-order
modes requires either near-field scattering techniques[3] or
the use of active media to promote surface plasmon ampli-
fication by stimulated emission of radiation (SPASER)[4].

A different mechanism to drive high-order LSP modes
with a spatially uniform optical field relies on the recently
introduced concept of plasmonic parametric resonance
(PPR)[5]. In contrast with conventional localized plasmonic
resonances, in which modes are excited directly by an ex-
ternal field of frequency and spatial profile matching those
of a given mode of the plasmonic particle, PPR is a form of
amplification in which a pump field transfers energy to a
mode in an indirect way. In PPR, in fact, the modes of a
plasmonic structure are amplified by means of a temporal

Fig. 1. Spectral distribution of the LSP resonances in a plas-
monic sphere.
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modulation of the background permittivity caused by an
appropriate pump field. Such permittivity variation trans-
lates into a modulation of the modal resonant frequency.
Under specific pump conditions, amplification can occur.
As shown in Ref. [5], among the unique characteristics of
PPR is the possibility of accessing modes of arbitrarily high
order with a simple spatially uniform pump, provided
that such pump exceeds a certain intensity threshold—a
characteristic of all parametric resonances.
In very general terms, a parametric resonance[6] occurs

when one or more of the parameters controlling the evo-
lution of a dynamical system undergo a temporal modu-
lation of appropriate amplitude and frequency.When such
conditions are met, the amplitude of the parametrically
resonant mode increases exponentially with time as long
as the parametric modulation continues. In formal terms,
the temporal evolution of a representative dynamical var-
iable XðtÞ of a system with resonant frequency ω0 and
damping γ under the action of a stimulus FðtÞ
is given by Eq. (1) in the case of direct excitation, and
by Eq. (2) for parametric excitation:

d2XðtÞ
dt2

þ γ
dXðtÞ
dt

þ ω2
0XðtÞ ¼ FðtÞ; (1)

d2XðtÞ
dt2

þ γ
dXðtÞ
dt

þ �
ω2
0 þ 2ω0δω½FðtÞ�

�
XðtÞ ¼ 0: (2)

In the parametric Eq. (2), the external stimulus FðtÞ
acts indirectly on the system by modifying the instanta-
neous resonant frequency by the amount δω½FðtÞ�.
A simple system described by Eq. (1) could be a simple

harmonic oscillator, like a mass m attached to a spring
with elastic constant k ¼ mω2

0. In this example, XðtÞ rep-
resents the displacement of the mass from the equilibrium
position. The restoring force provided by the spring can
be described in terms of a potential energy U ¼ kX2∕2.
As illustrated in Fig. 3(a), the free evolution of the system
is a damped harmonic oscillation. Now, let us assume that

the elastic constant of the spring is changed with time
through some external mechanism. This new situation
can be effectively described by Eq. (2). In the presence
of such parametric modulation, the potential landscape
varies with time, as shown in Figs. 3(b)–3(d), for the case
of a sinusoidal modulation around the unperturbed poten-
tial. Under the appropriate conditions, the energy that is
externally provided to change the potential of the system
can be transferred to the harmonic oscillator to compen-
sate or even overcome the dissipation mechanisms. If a
certain parametric-modulation threshold is exceeded,
the oscillation amplitude grows in time with an exponen-
tial envelope, as indicated in Fig. 3(d). In PPR, these con-
cepts are extended and applied to heavily multimode
optical resonators such as plasmonic particles.

In order to illustrate in general terms the principle of
the operation of PPR in a plasmonic nanoparticle of arbi-
trary shape, the first step is to identify a dynamical variable
obeying an evolution equation similar to Eq. (2). The first
complication that arises is due to the fact that all the
relevant physical quantities involved in such an electro-
magnetic problem are fields of some sort (like electric
potential, electric field, magnetic field, polarization density,
and current density), rather than simple kinematic varia-
bles like the position XðtÞ considered in the previous har-
monic oscillator example. This issue is addressed by
performing a modal decomposition of the field of interest
in terms of an appropriate complete and orthogonal set
of basis functions. By doing so, the field is expressed as a
sum of vector-field basis functions, each weighted with a

Fig. 2. Polarization charge density of the first few resonant
modes of a plasmonic sphere.

Fig. 3. (a) Time evolution of the position X of a harmonic oscil-
lator in a parabolic potentialU. (b)–(d) Time evolution of a para-
metrically driven oscillator with time-varying potential. (b)
Below threshold, the oscillation decays. (c) At the threshold
of parametric regeneration, the dissipations are exactly compen-
sated. (d) Above threshold, the parametric gain causes the oscil-
lations to grow exponentially.
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scalar time-dependent modal amplitude determined by the
initial conditions and by the subsequent evolution. As
shown in the following, such modal amplitudes can be used
as dynamical variables to cast the PPR problem in the form
of Eq. (2). Each modal amplitude will evolve in time,
according to an equation of the same form as Eq. (1), with
an appropriate natural frequency ωn depending on the
specific mode, the permittivity ε1 of the particle, and the
permittivity ε2 of the surrounding medium. This approach
immediately suggests that modulating one of these proper-
ties, say ε2, will cast the problem in the desired form of
Eq. (2). In the following, for the purpose of illustration
of PPR, we will consider a system that is amenable to a
close-form solution: a subwavelength plasmonic sphere in
a homogeneous dielectric background medium.
We consider a sphere of radius R and relative permittivity

ε1 (medium 1) embedded in a uniform dielectric medium ε2
(medium 2). The radius R is assumed to be much smaller
than the free-space wavelength associated with any of the
plasmonic eigenmodes of interest, so that a quasi-static
approach is applicable for determining the spatial distribu-
tion of the electromagnetic field. The dispersion of ε2 is
neglected. Medium 1 is assumed to follow a Drude-like
frequency-domain dispersion ε1ðωÞ ¼ ε∞ −ω2

pl∕ðω2 þ iωγÞ,
with plasma frequency ωpl , collision frequency γ, and a
non-dispersive term accounting for high-frequency spectral
features ε∞. The dispersive term in the ε1ðωÞ expression
is associated with the equation of motion for the free-carrier
polarization density P1ðr; tÞ within medium 1:

∂2P1ðr; tÞ
∂t2

þ γ
∂P1ðr; tÞ

∂t
¼ ε0ω

2
plE1ðr; tÞ; (3)

where E1ðr; tÞ is the electric field within medium 1. Medium
2 is assumed to be endowed with second-order nonlinearity
with a dominant term χð2Þzzz . Under such hypotheses, the
polarization density P2ðr; tÞ in medium 2 can be expressed
in terms of the total local field E2ðr; tÞ as follows:

P2ðr; tÞ ¼ ε0ðε2 − 1ÞE2ðr; tÞ þ PNL
2 ðr; tÞ: (4)

In Eq. (4), PNL
2 ðr; tÞ ¼ ε0χ

ð2Þ·E2ðr; tÞ∶E2ðr; tÞ is the
nonlinear polarization density due to the quadratic non-
linearity of medium 2. The total electric field E2ðr; tÞ in
medium 2 is the sum of all the fields due to the plasmonic
modes of the particle and a spatially uniform incident field
EPðtÞ, henceforth referred to as “pump”.
In the quasi-static approximation, the polarization den-

sity in medium 1 can be expanded in terms of spherical har-
monics Y ðe∕oÞ

n;m
�
θ;ϕ

�
, defined and normalized as in Ref. [5]:

P1ðtÞ¼
X
n;m

∇
�

rn

Rn−1

h
PðeÞ
n;mðtÞY ðeÞ

n;m
�
θ;ϕ

�þPðoÞ
n;mðtÞY ðoÞ

n;mðθ;ϕÞ
io
:

(5)

Performing similar expansions for all field quantities in
terms of spherical harmonics and applying the boundary
conditions at the particle’s interface yields the following

evolution equation for the polarization density amplitude
associated with any of the electromagnetic angular
momentum eigenmodes of the sphere:

d2Pðe;oÞ
n;m ðtÞ
dt2

þ γ
dPðe;oÞ

n;m ðtÞ
dt

þ ω2
nP

ðe;oÞ
n;m ðtÞ ¼ ω2

n
S ðe;oÞ
n;m ðtÞ
n

: (6)

In Eq. (6), the parameter ωn is the resonant frequency of
the eigenmodes of order n in the absence of nonlinear
interactions and is given by

ωn ¼
�����������������������������������

nω2
pl

nε∞ þ ðn þ 1Þε2

s
: (7)

The term S ðe;oÞ
n;m ðtÞ on the right-hand side of Eq. (6) is

the projection on the spherical harmonic Y ðe;oÞ
n;m ðθ;ϕÞ of

the nonlinear polarization density PNL
2 evaluated over the

surface of the sphere:

S ðe;oÞ
n;m ðtÞ ¼

I
r¼R

Y ðe;oÞ
n;m ðθ;ϕÞPNL

2 ðR; θ;ϕ; tÞ·r̂ sinðθÞdθdϕ:

(8)

Through Eq. (8), various eigenmodes are nonlinearly
coupled to one another and to the pump field. The sym-
metry group of medium 2 and the spatial profile of the
pump determine which specific three-wave mixing prod-
ucts contribute to the dynamics of a given eigenmode.

Let us consider the dynamics of the azimuthally uniform
(m ¼ 0) resonant mode of order n in the presence of a spa-
tially uniform time-harmonic z-polarized pump EPðtÞ. In
this case, the evolution of Eq. (6) assumes the following
form:

d2PðeÞ
n;0ðtÞ
dt2

þ γ
dPðeÞ

n;0ðtÞ
dt

þ ½ω2
n − α1EPðtÞ�PðeÞ

n;0ðtÞ ¼ α2
h
PðeÞ

n;0ðtÞ
i
2
: (9)

The expressions of the nonlinear interaction coefficients
α1 and α2 are given by

α1¼−
4

���
π

p
χzzz

n
���
3

p ω4
n

ω2
pl
Gðe;eÞ

n;0 ; α2¼
χzzz
nε0

ω6
n

ω4
pl
F ðe;e;eÞ

n;0 ;

F ðe;e;eÞ
n;0 ¼

Z2π
0

Zπ
0

�
cosθ

∂
∂z

�
Rnþ2

rnþ1 Y
ðeÞ
n;0ðθ;ϕÞ

	
R

×
∂
∂z

�
Rnþ2

rnþ1 Y
ðeÞ
n;0ðθ;ϕÞ

	
R
Y ðeÞ

n;0ðθ;ϕÞ


sinθdθdϕ;

Gðe;eÞ
n;0 ¼

Z2π
0

Zπ
0

�
cosθ

∂
∂z

h
rY ðeÞ

1;0ðθ;ϕÞ
i
R

×
∂
∂z

�
Rnþ2

rnþ1 Y
ðeÞ
n;0ðθ;ϕÞ

	
R
Y ðeÞ

n;0ðθ;ϕÞ


sinθdθdϕ: (10)
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The PPR threshold is minimized[5] if the pump field
oscillates at the second-harmonic frequency of the mode
of interest. We start, therefore, by considering a spa-
tially uniform monochromatic pump field of the form
EPðtÞ ¼ Ap sinð2ωntÞ. In solving Eq. (9), we notice that

so long as the condition
��Pðe;oÞ

n;m ðtÞ�� ≪ α1Ap∕α2 holds, which
is the case at the initial stages of the parametric
interaction, a solution can be easily obtained in terms
of Mathieu functions[7,8]. More intuitive though is the
following slowly varying envelope approximate solution:

Pðe;oÞ
n;m ðtÞ ¼ pðtÞcos½ωnt − θðtÞ�e−γ

2t ;

pðtÞ ¼ p0

������������������������������
cosh

�
α1Ap

2ωn
t

s
; θðtÞ ¼ arccot

�
exp

�
−
α1Ap

2ωn
t

	

;

(11)

where p0 is the initial modal amplitude. From Eq. (11),
for pðtÞ, it is clear that the system enters the PPR regime
provided that the pump electric-field amplitude Ap

exceeds the threshold value APPR ¼ 2γωn∕α1.
It is worth pointing out a unique property of plasmonic

parametric gain that emerges from the analysis above:
a plasmonic mode of any order ðm; nÞ can undergo
PPR and be amplified by a spatially uniform modulation
of the background permittivity, provided that the corre-
sponding threshold is exceeded. This is in contrast with
conventional LSP resonances, which, for a mode of order
ðm; nÞ, requires a driving field with a matching spatial
profile—a condition almost impossible to realize in prac-
tice for high-order plasmonic modes of deeply subwave-
length particles. For these reasons, PPR is uniquely
suitable to access plasmonic resonances of arbitrarily high
order in deeply subwavelength structures.
The unique characteristics of PPR lend themselves to

interesting applications in optical limiting. Recently, a
new class of nonlinear absorbers termed plasmonic para-
metric absorbers (PPAs) has been proposed[9]. The key in-
sight informing the PPA idea is that in the PPR process
the pump field experiences an absorption rate that
strongly depends on the intensity of the pump itself, cre-
ating two distinct regimes: one of weak absorption under
low intensity illumination and one of strong absorption
when the threshold of parametric resonance is reached
or exceeded. Such a threshold condition separates distinct
dynamics, so that Pðe;oÞ

n;m ðtÞ decreases exponentially for
Ap < APPR and increases exponentially for Ap > APPR.
Such contrasting modal dynamics are reflected in the
distinct absorption regimes that the pump is subjected
to. As shown in Ref. [9], the power parametrically trans-
ferred from the pump to the resonant mode is given by

WabsðtÞ ¼
nR3α1App20
32ε0ω2

pl

�
2ωn þ γ sinh

�
α1Apt
2ωn


	
e−γt

∼
nR3α1App20γ

64ε0ω2
pl

exp
�
ðAp − APPRÞ

α1t
2ωn

	
: (12)

Equation (12) highlights the fundamental trait of PPA,
which is in stark contrast with linear absorption: in PPA,
absorption is vanishingly small for incident fields below
the PPR threshold and increases exponentially under
high-intensity conditions.

Clearly, a saturation of the exponential behavior is ex-
pected, because, if nothing else, the absorbed power of
Eq. (12) cannot exceed the finite power carried by the
pump. In reality, a different mechanism limits Eq. (12) be-
fore pump depletion occurs. Such a mechanism is the res-
onance detuning due to additional three-wave mixing
processes in Eq. (9) that we have neglected so far. As��Pðe;oÞ

n;m ðtÞ�� ∼ α1Ap∕α2, Eq. (9) can only be integrated nu-
merically. Nevertheless, the following asymptotic expres-
sions as t → ∞ for Pðe;oÞ

n;m ðtÞ hold for Ap > APPR:

Pðe;oÞ
n;m ðtÞ∼−

α2Q2
1

2ω2
n
þQ1cosðωntþθ1Þþ

α2Q2
1

6ω2
n
cosð2ωntþ2θ1Þ;

θ1¼
1
2
arccos

�
−
APPR

Ap



; Q1¼

ωn

α2

��������������������������������������������
6γωn

5

�����������������������������
Ap

APPR



2
−1

svuut
:

(13)

Within the range of validity of Eq. (13), the exponen-
tially growing oscillations of the polarization density am-
plitude level off as t → ∞ after a sequence of relaxation
oscillations. In Fig. 4, the numerical solution of Eq. (9)
(indicated in blue) is compared with the predictions of
the asymptotic model in Eq. (13), shown in orange.

Based on Eq. (13), the average power W̄P transferred
from the pump to the plasmonic mode asymptotically
approaches the value

W̄ absðt → ∞Þ ¼ 3
20

nR3 γ

ε0ω
2
pl

ω3
n

α22

�������������������������������
Ap

APPR



2
− 1

s
: (14)

Fig. 4. Polarization density amplitude term PðeÞ
11;0 of a silver

sphere immersed in an MNA background medium. In order to
better highlight the relaxation oscillations occurring in the sys-
tem, we show a case in which the PPR threshold is exceeded by a
large margin (Ap ¼ 20APPR). The dashed lines show the oscilla-
tion limits predicted by the asymptotic Eq. (12).

COL 17(12), 122402(2019) CHINESE OPTICS LETTERS December 2019

122402-4



Using the steady-state asymptotic estimate of Eq. (14)
of the absorbed power, it is possible to obtain the PPR
contribution to the particle absorption cross-section (in
addition to the linear portion):

σNL¼
3nR3

40ε0
�����
ε2

p ω3
n

ω2
pl

α21
α22

������������������������������������
IPPR
I p

�
1−

IPPR
I p


s
; I p> IPPR: (15)

In Eq. (15), I p ¼ A2
p∕ð2ηÞ is the incident intensity, and

IPPR ¼ A2
PPR∕ð2ηÞ is the PPR intensity threshold, where

η is the intrinsic impedance of the background medium. If
particles similar to the one described so far are dispersed
with density N in the background medium, the nonlinear
pump attenuation coefficient of the composite follows
from Eq. (15) as αNL ¼ NσNL.
Figure 5 shows how the normalized absorption cross-

section of a silver sphere of radius R ¼ 100 nm in a
2-methyl-4-nitroanline (MNA)[10,11] host is affected by vari-
ous modes undergoing PPR. The absorption cross-section
is plotted against the normalized pump intensity, and, for
each of the PPR modes considered in Fig. 5, the incident
pump field is at twice the value of the corresponding res-
onant frequency given by Eq. (7). For the case at hand, all
the possible PPR resonant wavelengths λn fall in the range
λ∞ < λn ≤ λ1, where λ∞ ¼ 563 nm and λ1 ¼ 448 nm. As
evident from Fig. 5, as soon as a pump field of frequency
2ωn exceeds the intensity threshold IPPR, the particle’s
absorption cross-section increases dramatically due to
the contribution of the mode of eigenfrequency ωn under-
going PPR. This phenomenon is a form of reverse satu-
rable absorption and could have interesting applications
in optical limiting devices[12], especially given the design
versatility of metallic nanoparticles for targeting different
spectral regions.
For the purpose of illustration, in Fig. 6, we apply the

analysis and the models described thus far to the practi-
cally relevant case of a pulsed pump. The pulse considered
here is a 30 ps pulse of average power 0.5 W, focused to an

area of 25 μm2, on parametric resonance with the n ¼ 11,
m ¼ 0 mode (λ11 ¼ 460 nm) of a silver particle of radius
100 nm embedded in an MNA background medium.
The orange curve in Fig. 6 shows the total instantaneous
power of the pump field. The blue curve shows the instan-
taneous absorbed power caused by the PPR process. The
vertical dashed lines show the time interval in which the
pump field exceeds the PPR threshold. A similar behavior
is observed both in Figs. 4 and 6 at the onset of PPR,
where the modal polarization (and the corresponding ab-
sorption) builds up exponentially to slightly surpass the
steady-state value and then relaxes to such a value
through a series of oscillations (only one is discernible in
Fig. 6). Figure 6 confirms the dramatic increase in absorp-
tion that PPAs exhibit under high-intensity illumination.

In conclusion, we have illustrated the principles of the
operation of PPR. Unlike conventional LSP resonances,
all of the plasmonic modes of a nanostructure, including
the strongly sub-radiant ones, can be resonantly excited
by spatially uniform optical pumping, provided that the
corresponding threshold is exceeded. Accessing such a
high density of strongly localized states holds promise
for enhancing nonlinear light–matter interaction at the
nanoscale for the development of nonlinear optical meta-
materials and for optical limiting applications. In the con-
text of PPR, we have discussed the closely related theory
of PPAs. PPAs exhibit a reverse saturable absorption
behavior whereby an incident field that is parametrically
resonant with one or more of the modes of a plasmonic
particle experiences a strongly enhanced absorption when-
ever its intensity exceeds the relevant PPR threshold.
Such effect makes PPAs very promising candidates for
optical limiting applications, in addition to being of fun-
damental interest in the emerging field of nonlinear
plasmonics.

A. Salandrino acknowledges the support of the Air
Force Office of Scientific Research (AFOSR) through
grant No. FA9550-16-1-0152.

Fig. 5. Absorption cross-section of the plasmonic particle nor-
malized to the geometrical cross-section as a function of the
incident intensity.

Fig. 6. Orange curve shows the instantaneous pump powerWinc.
The blue curve shows the instantaneous pump power Wabs

absorbed by the particle via PPR of the n ¼ 11, m ¼ 0 mode.
The dashed vertical lines indicate the times at which the pump
intensity is equal to the PPR threshold.
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